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Statistical characterization of random electrostatic potentials

M. Aldana, H. Larralde, and G. Martı´nez-Mekler
Centro de Ciencias Fı´sicas, UNAM, Apartado Postal 48-3, Cuernavaca, Morelos, CP 62251, Mexico

~Received 14 January 2000!

In this work we study statistical properties of random electrostatic potentials generated by one dimensional
lattices with random charges. We show that the resulting random potentials are correlated Gaussian processes,
satisfying the Lindeberg version of the central limit theorem, if certain restrictions are imposed on the indi-
vidual potentials generated by the particles on the lattice. Since most of the point-particle electrostatic poten-
tials occurring in nature satisfy the Lindeberg condition, the correlation properties of the random potentials are
not arbitrary and must comply with the central limit theorem. Based on this theorem we can obtain explicit
expressions for these correlations. We thus are able to give a characterization of a broad class of potentials
yielding feasible physical scenarios. We illustrate some consequences of our findings by considering dynamical
properties of a test particle interacting with the lattice. We show how the long range correlations generate
statistical features in these properties, which are best exhibited when considering different length scales.

PACS number~s!: 05.40.2a, 02.50.Ey
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I. INTRODUCTION

Random potentials have long been an integral part of
modeling of disordered systems@1#. They appear in the de
scription of localization phenomena, anomalous transp
pinning, glassy states, intracellular transport, molecu
ratchets, and in many other fields of physics, chemistry
biology. However, despite this wide range of applicability
random potentials, their statistical properties are usually p
tulated as part of the model, with little or no emphasis
whether a potential landscape with the proposed prope
can be physically generated or not@2,3#.

It has also become clear by now that spatial correlati
of the potentials play a crucial role in the processes un
investigation. In many physical systems, these correlati
are present because realistic potentials allow particles to
teract at a distance. Even a completely uncorrelated distr
tion of random charges will give rise to a spatially correlat
potential landscape.

In this work we study the statistical properties of the ele
trostatic potential generated by a set of random charges
ranged on a one dimensional lattice, interacting with a
particle placed a distance away. Our main purpose is to g
a statistical characterization of the interaction potential, a
to present a simple formalism to deal with its joint probab
ity distribution function. In doing so, we shall see that mo
of the electrostatic potentials occurring in nature satisfy
hypothesis of the central limit theorem, and therefore
every imaginable spatial correlation of the random potent
may be physically achievable. As an example, we study
dynamics of an overdamped test particle forced to m
along the random potential. By analyzing the Fourier sp
trum of the particle’s velocity, we show spatial statistic
features and scaling properties arising from the correlati
of the potential.

The system that we shall study is shown schematically
Fig. 1, where a charged test particleQ interacts with a one
dimensional lattice composed ofn charged point particles
(n→`) separated by a constant distanced51. We can think
of this one dimensional lattice as a very large polymer wh
PRE 611063-651X/2000/61~6!/6136~13!/$15.00
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monomers are precisely the lattice particles. Thus, from n
on we will refer to the lattice as the ‘‘polymer’’ and to th
lattice particles as the ‘‘monomers.’’

The chargeQ can move along the polymer, but it is con
strained to remain at a constant distances perpendicular to
the polymer; under these circumstances, the dynamics o
particle is one dimensional. The chargeqk of each monomer
is either a discrete or continuous random variable wh
probability density functionP(q) is the same for all the
monomers. It is important to mention that by ‘‘charged pa
ticle’’ we do not mean just Coulombic particles. Both th
chargeQ and each one of the monomer chargesqk could be,
instead, particles having permanent electric dipoles, pola
able particles with induced electric dipoles, molecules int
acting through van der Waals forces, etc. As we shall
later, the potential experienced by the particleQ will be a
Gaussian process for most physically relevant interaction
tentials.

In the next section we discuss the type of electrosta
random potential generated by the system shown in Fig. 1
our calculations we consider general point-particle elec
static potential as a concrete example of the kind of pot
tials we will be working with, and the parameters involved
their specification. The results presented here can be ge
alized to a wider class of interaction potentials, as will
done in Sec. IV, where we consider ‘‘screened’’ potentia

In Sec. III we analyze the integrability properties of th

FIG. 1. Diagram illustrating the particle polymer basic setu
d51 is the distance between the monomers,x is the position of the
particleQ measured from the polymer origin, ands is the perpen-
dicular distance from the particle to the polymer.
6136 ©2000 The American Physical Society
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PRE 61 6137STATISTICAL CHARACTERIZATION OF RANDOM . . .
individual potentials generated by each one of the monom
in the polymer, and discuss how these properties lead
different types of statistical characterizations. In Sec. IV
state the conditions that these individual potentials nee
fulfill in order to have a statistical description based on
central limit theorem. If the Lindeberg condition holds, t
overall random potential~i.e., the potential generated by th
whole polymer! will be a Gaussian processes. In this sect
we also show that the electrostatic potentials most commo
occurring in nature satisfy the Lindeberg condition. Once
have ensured that the random potential is a correlated Ga
ian process, we proceed to find the parameters character
its probability distribution. In Sec. V we present a simp
formalism to compute the two-point joint probability distr
bution of the random potential explicitly. We should menti
that our framework and many formal results parallel those
Rice @4# in the context of noise. This is to be expected
after all, we are also considering an additive process. Ne
theless, as we are dealing with potentials, for which cla
cally only the differences are physically relevant, we impo
different and much less stringent restrictions on our eleme
of description. Also, we make a detailed classification of
statistics of the random potential in terms of the nature of
physical entities from which the potential arises.

In Sec. VI we illustrate how our results may be of use
the study of the dynamics of the particle along the polym
We show that the velocity of the particle presents spa
statistical features that are a direct consequence of the
range correlation of the individual potentials. These featu
are exhibited in the power spectrum of the velocity, and
related to the scale invariance of the statistical structure
the potentials. Finally, we conclude this work in Sec. V
with a brief summary and discussion of our results, a
present a classification of potentials in terms of the Lin
berg condition.

II. RANDOM POTENTIALS

Commonly, the interaction potentialU(r ) between two
charged particlesq1 andq2 separated by a distancer 12 can
be represented by means of a potential law in the follow
way @5#:

U~r !5K
q1q2

r 12
a

, ~1!

whereK is a constant. The exponenta tell us what kind of
interaction we are dealing with:a51 corresponds to a Cou
lomb interaction,a52 a dipolar interaction,a53 an ion-
induced dipole interaction, and so on. We should keep
mind that byq1 and q2 we do not mean just Coulombi
charges. They could also be dipolar moments, electrical
larizabilities, etc.

In the problem shown schematically in Fig. 1 we suppo
that all the monomer charges$qk% are of the same physica
type~e.g., they are all ions, or dipoles, etc.!, and that the only
thing changing from one charge to another is its value, wh
is an independent random variable with probability distrib
tion function P(q). The interaction potential between th
kth-monomer with chargeqk on the polymer and the tes
particleQ is then given by
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Us,k
a ~x!5akgs

a~x2k!, ~2!

whereak5KQqk andgs
a(y) is defined as

gs
a~y![

1

~y21s2!a/2
. ~3!

By summing up the contribution of each one of th
charges on the polymer, we obtain the overall interact
potentialV(x) between the polymer and the test chargeQ,
namely,

V~x!5 (
k52`

`

Us,k
a ~x!5 (

k52`

`

akgs
a~x2k! ~4!

~we have assumed that the polymer of infinite length!. Note
that the variablesak have the same probability distributio
P(q) except for a constant normalization factor which c
always be taken as unity. Therefore, from now on we sh
make no distinction betweenqk andak .

For our analysis we shall require the probability distrib
tion P(a) associated with the variablesak to satisfy the fol-
lowing conditions:~a! ^ak&5*2`

1`aP(a)da50. ~b! ^aiak&
5^ai&^ak&50. ~c! P(a)50 if uau.R, for some real number
R.0.

In all other aspects, the probability distributionP(a) is
arbitrary. Condition~a! is not essential and is introduced ju
to simplify calculations; physically, it corresponds to appr
priately setting the zero of the potential energy. Conditi
~b! establishes that the monomer chargesqk along the poly-
mer are statistically independent one from the other, a pr
erty which is clearly inherited by the variablesak @6#. Fi-
nally, condition ~c! ensures that we are considering fini
charges. In the next section we shall see that, for the con
gence of Eq.~4!, in some cases this condition can be relax
by requiring only thatP(a) has a well defined second mo
ment. Nevertheless, when we analyze the dynamics of thQ
particle along the polymer, we shall require thatak be
bounded.

At this point, it is worth mentioning that the parameters,
besides being the perpendicular distance from the polyme
the test particle, can be considered as the length sca
which the individual potentialsUs,k

a (x) contribute apprecia-
bly to the overall interaction potentialV(x) at a particular
positionx @or, in other words,s is the length scale at which
the functiongs

a(y) is appreciably different from zero#. In
Fig. 2 we depict three graphs of the potential given by e
pression~4! for different values ofs, and a54. These
graphs were obtained by allowing the variablesak to take the
values$61, 62, 63% with the same probability@through-
out this work we shall use this distribution of charges sin
we will see that some dynamical properties of the particle
not depend on the specific statistical nature of the chargean
provided the probability distributionP(a) satisfies condi-
tions ~a!, ~b!, and ~c! mentioned above#. We can observe
from this figure that the potential landscape becomes smo
ass increases~note the scale differences in the graphs!. This
smoothness of the potential ass takes larger values is a
consequence of the long range correlations among the i
vidual potentialsUs,k

a (x), i.e., it is due to the fact that whe
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6138 PRE 61M. ALDANA, H. LARRALDE, AND G. MARTI´NEZ-MEKLER
s increases, more and more monomers on the polymer
tribute to the overall potential at a particular positionx. The
latter can be expressed by saying that, when the particQ
moves away, it is unable to ‘‘see’’ the fine structure of t
potential, resolving only the coarse structure, while if t
particle is very near to the polymer, it ‘‘feels’’ only th
monomer just below it.

III. INTEGRABILITY PROPERTIES

It is clear that at a fixed positionx, the overall interaction
potentialV(x) is the sum of a very large number of indepe
dent random variables$Us,k

a (x)% each of them having its
own probability distribution. We should then expect that
some appropriate limit the central limit theorem could
applied in order to find ther-point joint probability distribu-
tion P„V(x1),V(x2), . . . ,V(xr)… which statistically charac-
terizes the potentialV(x). For this to happen it is necessa
for the sum in Eq.~4! to remain finite for every value ofx. Of
course, the potentialsUs,k

a (x) given in Eqs.~2! and ~3! sat-
isfy the above condition as long asa.1, but in general, for
other kinds of interaction potentials, this may not be the ca

FIG. 2. Interaction potential between the particle and the po
mer for successively increasing values ofs, and a54, using a
probability distribution of charges for which the variablesak take
the values61,62,63 with the same probability.~a! s50.1. ~b!
s51. ~c! s510. ~d! s5100. In all these cases the amplitude
the potential has been scaled by a factorsa. Note that the interac-
tion potential becomes smooth ass increases.
n-

e.

A random potentialV(x) that can be written in the form

V~x!5 (
k52`

`

akg~x2k!, ~5!

where theak’s are random variables andg(y) is a given
function, will be meaningful or not according to the integr
bility properties ofg(y). For our purposes, it will be conve
nient to distinguish between the three following cases.

~1! *2`
` ug(y)udy,`. In this caseg(y) is absolutely in-

tegrable and no problems arise, since the sum in Eq.~5!
remains finite, and thereforeV(x) is well defined for
every x. Indeed, it is easy to see thatV(x) is bounded,
since uV(x)u5u(k52`

` akg(x2k)u<maxuaku(k52`
` ug(x2k)u

<R*2`
` ug(y)udy, and we are supposing that this integral co

verges. We shall refer to this situation as thebounded poten-
tial case.

~2! *2`
` ug(y)udy does not converge, but*2`

` @g(y)#2dy
,`. Given that^ak&50, the random potentialV(x) does
not diverge at any positionx but, sinceg(y) is not absolutely
integrable,V(x) can acquire very large values. Howeve
V(x) has a typical value given by its variance, which is fin
as can be seen:

Var@V~x!#5^@V~x!#2&

5K S (
k52`

`

akg~x2k!D 2L
5K (

k52`

`

akg~x2k! (
i 52`

`

aig~x2 i !L
5 (

k52`

`

^ak
2&@g~x2k!#2

1(
iÞk

^aiak&g~x2 i !g~x2k!

5D2 (
k52`

`

@g~x2k!#2

'D2E
2`

`

@g~y!#2dy,`.

whereD25^ak
2& is the second moment ofP(a). To obtain

this result we have made use of the properties~a! and ~b!
imposed onP(a) in the preceding section, and instead
property ~c!, we only require the existence ofD2. Since in
this case the random potential has a typical value, we
refer to this situation as thelocalized potential case.

~3! *2`
` @g(y)#2dy does not converge. Ifg(y) is not

square integrable the sum in Eq.~5! leads to divergences
This is due to the fact that the individual potentialsUk(x)
5akg(x2k) decay so slowly that the contributions comin
from the charge fluctuations in the system do not vanish
enough nor cancel out efficiently. This can be easily visu
ized in the simple case in whichg(x) is constant and the
superposition ofn of these individual potentials generated b
the random charges yields the same ‘‘random walk’’ at ev
point in space, whose value typically diverges as the squ
root of n.

-
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PRE 61 6139STATISTICAL CHARACTERIZATION OF RANDOM . . .
This case can be further characterized in two ways, c
responding to different physical behaviors.

Rough potential. In many instances, the quantities
physical interest are the forces derived from the potentials
these forces are square integrable, then the central limit t
rem can be applied to them, instead of to the potenti
Equation~5! is then substituted by an analogous one invo
ing the derivatives of the functiong(y). Also, there are situ-
ations in which the potential landscape is of particular r
evance to the physical problem, as would be the cas
Brownian transport and other escape rate related phenom
In these situations, the size and distribution of the poten
wells and barriers are the crucial elements for a descript
Hence, we are interested in characterizing the statist
properties of ‘‘potential differences,’’ and we can do this
considering as the random variables involved in the desc
tion the quantities Wk(x) defined as $Wk(x)5Uk(x)
2Uk(y), k51,2,3, . . . %, which is equivalent to setting th
potential to zero at the arbitrary positiony. If square integra-
bility holds for Wk(x), we can again invoke the central lim
theorem for these quantities. In general, a property aris
under such circumstances is that the resulting random po
tial is no longer ‘‘regular,’’ but rather it becomes rough
large length scales in the sense that^@V(x1)2V(x2)#2&
;ux12x2un, wheren is a positive scaling exponent having
do with the specific type of interaction we are considerin

Nondifferentiable potentials.When neither the potentia
derivatives nor the potential differences are square in
grable, the resulting random potential is nowhere differ
tiable, which is not physically meaningful. The above occ
when the individual potentials increase fast enough with d
tance.

It is clear so far that in order to perform a statistical ana
sis of the random potentialV(x) based upon the central lim
theorem it is necessary for the individual potentialsUk(x) to
be bounded or localized. Nevertheless, this is a neces
condition, but not a sufficient one, as we will see in the n
section, where we show that another way for the central li
theorem to fail is if the range of interaction is extreme
narrow. For the time being, we should mention that the cl
of potentialsUs,k

a (x) given in Eqs.~2! and ~3! give rise to
three of the cases mentioned above, depending on the v
of a: if a.1 we are in the bounded potential case, while
1/2,a<1 we have the localized potential case and
21/2,a<1/2 the rough potential case. In what follows, w
shall always assume that the interaction potentials we
dealing with are bounded or localized@i.e., g(y) is square
integrable#.

IV. CENTRAL LIMIT THEOREM

We now proceed to findP„V(x1),V(x2), . . . ,V(xr)…,
namely, ther -point joint probability density function charac
terizing V(x). Our aim is to show that in an appropriat
physically relevant limit, we can apply the central limit the
rem ~CLT! so thatV(x) becomes a Gaussian process. N
that in general the random variablesUs,k

a (x) are not equally
distributed and have different probability density function
If we let Pk(u) be the probability density function associat
with the random variableUs,k

a (x), it follows from Eq. ~2!
that Pk(u) andP(a) are related by the following equation
r-
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Pk~u!5
1

gs,k
a ~x!

PS u

gs,k
a ~x!

D , ~6!

where for simplicity we have definedgs,k
a (x) as

gs,k
a ~x![gs

a~x2k!. ~7!

Equation~6! shows that the random variablesUs,k
a (x) are

in general not equally distributed. Therefore, if we want
determine the probability distribution functio
P„V(x1),V(x2), . . . ,V(xr)… characterizing the overall po
tential V(x), we have to make use of the Lindeberg versi
of the CLT, which states thatP„V(x1),V(x2), . . . ,V(xr)…
approaches a Gaussian distribution whenever the Linde
condition holds@7# ~see the Appendix!.

We now turn to the question of the ‘‘appropriate limit’’ in
which the CLT can be applied to our problem. First, w
should remark that the Lindeberg condition requires that
number of terms appreciably contributing to the sum in E
~4! be very large~formally, infinity!. Note that having an
infinite number of monomers in the polymer does not gu
antee that the number of terms appreciably contributing
the overall potential is also infinite. This situation is depict
very schematically in Fig. 3, where we show the individu
potentialUs,k

a (x) generated by thekth monomer of the poly-
mer, for two different values of the parameters. If s is very
small, we can make the contribution ofUs,k

a (x) completely
negligible at positionx by takingk sufficiently far away from

FIG. 3. The individual potentialUs,k(x) generated by thekth
monomer at positionx5k in the polymer.~a! If the range of the
potential is extremely short, or ifs has a very small value, then th
contribution of Us,k at positionx0 is completely negligible, pro-
vided k is far enough fromx0. ~b! By increasing the range of the
potential, or allowings to acquire larger and larger values, th
potential ‘‘spreads out’’ having now an appreciable contribution
positionx0.
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the positionx. When we say ‘‘completely negligible’’ we
mean that theUs,k

a (x) contribution is negligible with respec
to that due to the nearest monomer to thex position. Under
these circumstances, the sum in Eq.~4! will contain a re-
duced number of appreciably contributing terms, regard
of the polymer size. On the other hand, ifs is very large,
then the potentialUs,k

a (x) spreads out and its contribution
comparable to that coming from the nearest monomer tx.
The above means that when theQ particle is very close to the
polymer~very smalls), it tends to ‘‘feel’’ the monomer just
below it, while if Q is far enough from the polymer, then
collective interaction between particle and polymer preva
with more terms contributing significantly to Eq.~4! as s
increases.

From the above it is clear that, in order to apply the CL
we must require both that the polymer has an infinite num
of monomers and thats has a large enough value. Und
these circumstances, the Lindeberg condition stated for
sum in Eq.~4! is ~see the Appendix!

lim
s→`

1

J0
2E

2`

`

dy@gs
a~y!#2E

uau.tJ0 /gs
a(y)

a2P~a!da50, ~8!

for any real numbert.0, whereJ0
2 is given by

J0
2[D2E

2`

`

@gs
a~y!#2dy, D25E

2`

`

a2P~a!da. ~9!

The Lindeberg condition is sufficient for the CLT to b
valid. This condition ensures thatJ0

2 @and therefore the ran
dom potentialV(x) given in Eq. ~4!#, is the sum of many
contributions, each of them negligible compared withJ0

2 it-
self, and imposes three restrictions on the potentialsUs,k

a (x)
for which our theory applies, i.e.,~1! gs

a(y) must be square
integrable;~2! gs

a(y)/J0→0 as s→`; and ~3! P(a) must
has a well defined second moment.

For this reason we have assumed that the poten
Us,k

a (x) are bounded or localized and thatP(a) is bounded
in the sense thatP(a)50 if uau.R. On the other hand, it is
clear that in the rough potential case, the Lindeberg con
tion applies to the potential derivatives~i.e., the forces! or to
the potential differences.

It is straightforward to show that the class of potenti
Us,k

a (x) given in Eqs.~2! and~3! satisfy the Lindeberg con
dition if a.1/2, and that if21/2<a,1/2 this condition is
satisfied by the derivatives or differences of these potent
Futhermore, in the Appendix we show that this condition
also satisfied by the wider class of ‘‘screened potentials’

Us,k
ab ~x!5akgs

ab~x2k!, ~10!

gs
ab~y!5

exp@2~g/2!~y21s2!b#

~y21s2!a/2
, ~11!

as long as 0,b,1, for every a. The factor exp@2(g/
2)(y21s2)b# allows for the possibility that the potential be
tween the polymer and the test particle is ‘‘screened.’’
particular, ifb51/2, Eq.~11! transforms into a Yukawa po
tential, which in the literature is always referred to as
‘‘short range potential.’’ However, from the above we c
ss

,

,
r

he

ls

i-

ls.
s

see that even the Yukawa potential has a long enough ra
to satisfy the Lindeberg condition.

If b>1 the interaction becomes very short range, a
under these circumstances the CLT does not hold. The
son is that in this case the individual potentials are of su
extremely short range that for a given positionx, we are not
dealing with an infinite number of random variables in E
~4!, but rather with just a few of them~those that are in the
vicinity of the Q particle and therefore the only ones th
appreciably contribute to the overall potential!. The above
considerations make it evident that the Lindeberg condit
may not be satisfied either because the individual poten
do not decay to zero sufficiently rapidly with distance a
consequently they are not bounded or localized~square inte-
grable!, or because the individual potentials decay extrem
rapidly to zero with the distance~very short range or strictly
finite range!, which implies that at any positionx only a
small number of random variables contribute to the ove
potentialV(x).

Once we have ensured that the Lindeberg condition ho
for the class of potentials we are considering, it follow
that the r-point joint probability distribution
P„V(x1),V(x2), . . . ,V(xr)… will be Gaussian for very large
s. This is not to say that the resulting distribution cannot
Gaussian if the above condition does not hold, as the ab
is a sufficient but not a necessary condition. Indeed, if
Lindeberg condition is not satisfied, the random poten
V(x) may or may not be described by a Gaussian distri
tion. In what follows, we will focus our attention on poten
tials for which the Lindeberg condition is satisfied.

V. PROBABILITY DISTRIBUTION
OF THE RANDOM POTENTIAL

In this section we present a simple formalism to comp
P„V(x1),V(x2), . . . ,V(xr)… explicitly. In order to make our
approach as simple as possible, we will focus on the tw
point joint probability distribution functionP„V(x1),V(x2)….
All the results presented here can easily be generalized to
case ofr sites.

We start by assuming that the polymer is composed o
finite number of monomers, sayn. The basic element in ou
analysis is that the potentialV(x) is a random variable con
sisting of the sum of the potentialsUs,k

a (x) due to then
monomers in the polymer, and that these are indepen
random variables whose probability distributions are giv
by Eq. ~6!. The general scheme is to state a recurrence r
tion for the two-point joint probability distribution, labele
with the numbern of monomers on the polymer, and to solv
this recurrence relation in the limitn→` and for very large
s. As we have seen, the CLT ensures that the resultant t
point joint probability distributionP„V(x1),V(x2)… will be a
Gaussian distribution for which we need to determine
parameters characterizing it.

In what follows, it will be useful to distinguish betwee
the interaction potential generated by a polymer withn21
monomers and that generated by a polymer withn mono-
mers. Thus, we will write asVn21(x) andVn(x) the poten-
tial landscapes generated by the (n21)-polymer and the
n-polymer respectively. Suppose first that the polymer
made up ofn21 monomers whose charges area1 , a2 , . . . ,



ti
-

l
-

d
to
s

i-

ce,
ct.
f

g

de-

ne
t,

b-

u

the
er
n,

PRE 61 6141STATISTICAL CHARACTERIZATION OF RANDOM . . .
an21. These charges generate the interaction poten
Vn21(x)5(k51

n21akgs,k
a (x) which is characterized by the two

point probability distribution Pn21„Vn21(x1),Vn21(x2)….
When we add another monomer with chargean to the poly-
mer end~see Fig. 4!, it contributes to the overall potentia
with the termUs,n

a (x)5angs,n
a (x), so that now the interac

tion potential is given by Vn(x)5Vn21(x)1angs,n
a (x)

5(k51
n akgs,k

a (x). The new term changes the potential lan
scape, transforming its probability distribution in
Pn„Vn(x1),Vn(x2)…. Now, if Vn(x) takes the specific value
Vn(x1) andVn(x2) at x1 andx2, respectively, thenVn21(x)
should havethe valuesVn21(x1)5Vn(x1)2angs,n

a (x1) and
Vn21(x2)5Vn(x2)2angs,n

a (x2) at the corresponding pos
tions, and the probability for this to happen is

Pn21„Vn21~x1!,Vn21~x2!…

5Pn21†Vn~x1!2angs,n
a ~x1!,Vn~x2!2angs,n

a ~x2!‡.

~12!

We can now obtainPn„Vn(x1),Vn(x2)… in terms of the
last equation, multiplying it byP(an) and then summing up
over all the possible values ofan leading to the values

FIG. 4. ~a! Potential landscape generated by a polymer made
of n21 monomers.~b! Another monomer is added at positionx
5n. This new monomer contributes to the overall potential with
termUs,n(x) ~solid line!. ~c! The resulting potential landscape aft
the incorporation of thenth monomer contribution. As can be see
the curve is different from the one depicted in~a!; hence, the prob-
ability distribution also changes.
al

-

Vn(x1) and Vn(x2) at positionsx1 and x2. Taking into ac-
count thatP(a) is the probability distribution of all theak’s,
the relationship betweenPn21 and Pn is given by the fol-
lowing integral relation:

Pn„Vn~x1!,Vn~x2!…5E
2`

`

Pn21„Vn~x1!2ags,n
a ~x1!,Vn~x2!

2ags,n
a ~x2!…P~a!da, ~13!

This last equation can be handled better in Fourier spa
since there the convolution transforms into a simple produ
Thus, if we callj1 andj2 the Fourier conjugate variables o
Vn(x1) and Vn(x2), respectively, by Fourier transformin
Eq. ~13! we arrive at the equivalent expression

P̂n~j1 ,j2!5P̂n21~j1 ,j2!P̂„gs,n
a ~x1!j11gs,n

a ~x2!j2….
~14!

In order to solve this recurrence equation we need to
termine P1„V1(x1),V1(x2)…, namely, the two-point joint
probability distribution in the case when there is just o
monomer in the ‘‘polymer.’’ To do this, we should note tha
in such a case, with just one particle placed atx51, the
overall potentialV(x) is simply given by

V~x!5V1~x!5a1gs,1
a ~x!. ~15!

Thus the potential will have the valueV1(x1) at x5x1 if and
only if the variablea1 has the value

a15
V1~x1!

gs,1
a ~x1!

. ~16!

The probability for this to happen is given by Eq.~6!, with
k51:

P1„V1~x1!…5
1

gs,1
a ~x1!

PS V1~x1!

gs,1
a ~x1!

D . ~17!

OnceV(x) has acquired the valueV1(x1) at x5x1, its value
V1(x2) at another positionx5x2 is constrained to be

V1~x2!5a1gs,1
a ~x2!5

V1~x1!

gs,1
a ~x1!

gs,1
a ~x2!, ~18!

and the conditional probabilityP„V(x1)uV(x2)… for this to
happen is simply

P„V~x1!uV~x2!…5dS V1~x2!2
V1~x1!

gs,1
a ~x1!

gs,1
a ~x2!D

whered(•) is the Dirac delta function. Therefore, the pro
ability distributionP1„V1(x1),V1(x2)… is

p



m

e

in
s

ts

re
th

s

nd-

n
ion

n

are
ized

on
n-

he
the

e
it is
en-
wn

6142 PRE 61M. ALDANA, H. LARRALDE, AND G. MARTI´NEZ-MEKLER
P1„V1~x1!,V1~x2!…5
1

gs,1
a ~x1!

PS V1~x1!

gs,1
a ~x1!

D
3dS V1~x2!2

V1~x1!

gs,1
a ~x1!

gs,1
a ~x2!D

~19!

By Fourier transforming the above equation we have

P̂1~j1 ,j2!5 P̂„gs,1
a ~x1!j11gs,1

a ~x2!j2…, ~20!

This is the initial condition for Eq.~14!, which then becomes

P̂n~j1 ,j2!5)
k51

n

P̂„gs,k
a ~x1!j11gs,k

a ~x2!j2…. ~21!

For the sake of symmetry, we label the particles fro
2m to m, and will eventually take the limitm→`, indicat-
ing that all the particles in the polymer are being consider
The required solution to the recurrence relation Eq.~14! is
then

P̂m~j1 ,j2!5 )
k52m

m

P̂„gs,k
a ~x1!j11gs,k

a ~x2!j2…. ~22!

Now, we are assuming that the functionsgs,k
a (x) vanish

ass grows@see Eq.~3! or Eq. ~11!#. Therefore, ifs is very
large, the argumentl5gs,k

a (x1)j11gs,k
a (x2)j2 of P̂(l) in

Eq. ~22! is very small, and we can expand this function
powers of its argument, keeping up to second order term

P̂„gs,k
a ~x1!j11gs,k

a ~x2!j2…

.12 im„gs,k
a ~x1!j11gs,k

a ~x2!j2…

2 1
2 D2

„ga,k
a ~x1!j11gs,k

a ~x2!j2…
21•••, ~23!

where, of course,m andD2 are the first and second momen
of the probability distributionP(a), respectively. In view of
the condition~a! imposed onP(a) ~see Sec. II!, m50, and
consequently Eq.~22! can be written as

P̂m~j1 ,j2!. )
k52m

m

@12 1
2 D2

„gs,k
a ~x1!j11gs,k

a ~x2!j2…
2#.

~24!

At this point it is worth while to emphasize that we a
working under the assumption that the hypothesis for
central limit theorem holds. Thus, though we only have
second order expression in Eq.~24!, this theorem ensure
that the term 12 1

2 D2
„gs,k

a (x1)j11gs,k
a (x2)j2…

2 necessarilly
comes from the expansion of exp@21

2D
2
„gs,k

a (x1)j1

1gs,k
a (x2)j2…

2#. Equation~24! can then be written as
d.

:

e
a

P̂m~j1 ,j2!. )
k52m

m

exp@2 1
2 D2

„gs,k
a ~x1!j11gs,k

a ~x2!j2…
2#

5expS 2
1

2
D2 (

k52m

m

@gs,k
a ~x1!j1

1gs,k
a ~x2!j2#2D .

The above is clearly the characteristic function correspo
ing to a Gaussian distribution, as expected. In the limitm
→` and for very larges, the sums in the last expression ca
be substituted by integrals, and this characteristic funct
acquires the final form

P̂~j1 ,j2!5exp@2 1
2 ~J0

2j1
21J0

2j2
21J1,2

2 j1j2!#, ~25!

whereJ0
2 andJ1,2

2 are defined as

J0
25D2E

2`

`

@gs
a~z!#2dz, ~26!

J1,2
2 5D2E

2`

`

gs
a~z2x1!gs

a~z2x2!dz. ~27!

By taking the inverse Fourier transform of Eq.~25! we
obtain the desired two-point probability distributio
P„V(x1),V(x2)…, which is then

P„V~x1!,V~x2!…

5
1

pA4J0
42J1,2

4
expS 2

1

4

3
J0

2@V~x1!#21J0
2@V~x2!#22J1,2

2 V~x1!V~x2!

4J0
42J1,2

4 D . ~28!

The above result shows explicitly that the process we
dealing with is a stationary Gaussian process character
by J0

2 andJ1,2
2 . Indeed,J1,2

2 is the correlation function of the
random potential, which is a function only of the separati
distanceux12x2u. The long distance correlation of the pote
tial can be obtained by Fourier transforming Eq.~27! and
then examining its small wave number behavior. SinceJ1,2

2 is

a convolution, its Fourier transformJ1,2
2̂ (l) is straightfor-

ward:

J1,2
2̂ ~l!5D2@ ĝs

a~l!#2. ~29!

The detailed behavior will depend on the nature of t
interaction, but in general terms, we can say that for

bounded and localized potential casesJ1,2
2̂ (l)→const asl

→0; otherwise,J1,2
2̂ (l);l2n for small l, where the expo-

nentn is a measure of the ‘‘roughness’’ of the potential. W
have mentioned above that in the rough potential case
convenient to look at the potential differences or the pot
tial derivatives instead of the potential itself. It can be sho
that for the potentialsUs,n

a (x) that we have referred to in
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Eqs.~2! and ~3! n5122a and hence the long distance b
havior of the overall potentialV(x) is given by

^@V~x1!2V~x2!#2&→H f ~a!ux12x2u122a a<1/2

const a.1/2

as ux12x2u→`, where f (a) is a function that vanishes a
a50.

VI. DYNAMICS

We now illustrate how the results of the preceding s
tions can be used to determine some statistical prope
related to the dynamics of a test particleQ moving through a
finite polymer made up ofn52m11 monomers (m→`). In
order to do this, we suppose that there is an external driv
forceF acting on the particle whose only purpose is to ma
the particle go through the polymer, ‘‘exploring’’ the pote
tial. We will restrict our analysis to thebounded force case.
This is analogous to the bounded potential case which
have referred to in Sec. III, but with forces instead of pote
tials. Under such circumstances, we can always choose
value of the forceF sufficiently large to avoid the particle
being trapped in one of the potential minima.

In principle, the forceF can be time dependent, but in ou
analysis we will use a steplike force given by

F5H F0 , xP@2m,m#

0, xP” @2m,m#,
~30!

whereF0 is a constant. The dynamics of the particle in t
overdamped regime@8# is given by

gv52
]V~x!

]x
1F, ~31!

or taking into account Eq.~4! we have

gv52
]

]x S (
k52m

m

akgs
a~x2k!D 1F. ~32!

In Fig. 5~a! we show the velocity as a function of th
position of the particle along the polymer, where we ha
used the potential of Fig. 2~c!. On the other hand, Fig. 5~b!
shows the power spectrum of the above velocity, numeric
obtained by means of Lomb’s method@9#. The spectrum
shows mild frequency selection as well as a hump in
average behavior, which, as we will see, is related to sta
tical properties of the potential disorder@10#. For this, we
Fourier transform Eq.~32!, which leads to

v̂~l!5 ilĝs
a~l! (

k52m

m

ake
2 ilk2

2F0

l
sin~ml!, ~33!

where, for simplicity, we have takeng51. The second term
on the right hand side of Eq.~33! is just the Fourier trans
form of the constant forceF given in Eq.~30!. Since such a
term does not carry information about the spatial structu
we can drop it from the analysis, retaining only the first ter
In doing so, we keep in the power spectrum just the inf
mation concerning the potential structure. Nevertheless,
-
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should keep in mind that the external forceF must be presen
in Eq. ~32! in order to drive the system.

With the above considerations, the contribution to t
power spectrum of the velocity relevant for our purposes
given by

uv̂~l!u25l2@ ĝs
a~l!#2U (

k52m

m

ake
2 ilkU2

. ~34!

If we take the average of this equation over the ensem
of all the possible realizations of the chargesak , we obtain

^uv̂~l!u2&5nl2D2@ ĝs
a~l!#2 ~35!

see the Appendix, or taking into account Eq.~29! we get

^uv̂~l!u2&5nl2J1,2
2̂ ~l!. ~36!

with n5m11 the total number of monomers in the polyme
The above equation shows that the statistical features of
velocity exhibited in the power spectrum are a direct con
quence of the potential correlations.

For the class of bounded potentialsUs,n
a (x) given in Eqs.

~2! and ~3! with a.1, the average power spectrum of th
velocity is as follows:

FIG. 5. ~a! Single realization of the velocity of the particle alon
the polymer as a function of the position, corresponding to
potential shown in Fig. 2~c!. ~b! Fourier spectrum of the abov
velocity. The dashed bold curve is the corresponding avera

power spectrum̂uv̂(l)u2& given in Eq.~37!.
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^uv̂~l!u2&5
n8pD2

@G~a/2!#22as2a
@~sl!(a11)/2K (a21)/2~sl!#2,

~37!

where Kb(z) is the Bessel function of the second kind
orderb. In Fig. 5~b! we show that the graph of Eq.~34! acts
as an envelope of the power spectrum. Also note from
above equation that̂uv̂(l)u2& is actually a function of the
scaled variablez5sl. Multipling the wave numberl by s
is equivalent, in real space, to taking the transverse dista
s as the unit of length~instead of the separation distan
between the monomers!.

Since the potentials we are considering are Gaussian
cesses, following Rice@4# we can write an explicit relation
between statistical features of the potential and dynam
properties, namely,

l̄ 54pS E
0

`

^uv̂~l!u2&dl

E
0

`

l2^uv̂~l!u2&dl
D 1/2

. ~38!

where l̄ is the mean distance between consecutive minim
the velocity of the particle along the polymer. Combining t
last two equations we have that the mean distancel̄ a be-
tween consecutive minima in the velocity as

l̄ a54psh~a!, ~39!

where

h~a!5S E
0

`

@z(a11)/2K (a21)/2~z!#2dz

E
0

`

@z(a13)/2K (a21)/2~z!#2dz
D 1/2

~40!

is a function ofa only. In Fig. 6 we show the graph ofl̄ a /s
as a function ofa, obtained by numerically computingh(a)
from Eq. ~40!. By performing a least squares fit on th
graph, the functional relationship betweena and l̄ a /s turns
out to be

l̄ a /s>5.13a21/2 ~41!

Note that Eq.~39! states thatl̄ a is ascale invariant quantity,
since for a given type of interaction~fixed a), l̄ a /s is con-
stant, provideds is large enough for the Gaussian appro
mation to hold.

The above considerations can be visualized in Fig.
where we show the velocity of the particle along the polym
for different values ofs and a54. As can be seen in th
figure, if s is large enough, the statistical structure of t
velocity does not change ass increases, once we have re
caled the graphs in units ofs. In Fig. 8 the velocity of the
particle along the polymer is depicted again, but now
successively increasing values ofa and constants. We can
see that Eq.~41! is actually giving the mean distance b
tween consecutive minima in the velocity by counting t
e

ce

o-

al

in

,
r

r

number of relevant minima occurring in each graph of Fig.
and dividing the corresponding interval on theX axis by the
respective number of minima. For example, in Fig. 8~b! (a
520) the number of relevant minima isN531, and the in-
terval on theX axis isI x550 ~in s units!. Consequently, the
observed mean distance in this figure isN/I x550/31
'1.613, in good agreement with thel̄ 20/s51.622 value
predicted by Eq.~41!.

VII. CONCLUDING REMARKS

Throughout this work we have seen that a random dis
bution of charges along a polymer generates a random
related potential with a Gaussian distribution, even thou
the charges on the polymer are not correlated. This resu
quite general since, as we have seen, in order to obta
very few restrictions on the system were imposed: for
electrostatic potentials most commonly occurring in nat
~which are square integrable!, it is sufficient for the distribu-
tion P(a) to have a well defined second moment.

In view of the results presented here, a note of cautio
relevant when assigning correlations in the modeling of d
order. We have shown that for randomly charged point p
ticles, the CLT restricts the resulting potentials to be cor
lated Gaussian processes; for example, ad-correlated
potential landscapeV(x), i.e., one whose correlation func
tion is given by^V(x1)V(x2)&5d(x12x2) is ruled out.

Although the electrostatic potentials most commonly o
curring between point particles actually satisfy the Lindeb
condition, and therefore yield Gaussian distributions, th

FIG. 6. Mean distancel̄ a ~in s units! between consecutive
minima in the velocity as a function ofa.
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are some interaction potentials for which the Lindeberg c
dition does not hold. If the individual potentials generated
each one of the monomers are of extremely short range, o
on the contrary, they do not decrease sufficiently rapi
with distance, then the Lindeberg condition is no long
valid and consequently the resultant potential will not nec
sarily be a Gaussian process. In Table I we show param
ranges for which the ‘‘screened’’ interaction potential giv
by Eq. ~11! satisfies or not the Lindeberg condition. We c
consider these potentials~or a linear superposition of them!
as the most general type of electrostatic potentials occur
between point particles.

We should emphasize that, in the rough potential case
Gaussian probability distribution corresponds not to the
tential itself, but rather to the potential differences or pote
tial derivatives, which are the physically relevant quantiti

We have also been able to establish links between st
tical properties of the potential and dynamical features of
test particle interacting with the polymer. In the Gauss
approximation, the power spectrum of the particle’s veloc
is scale invariant and directly related to the long range c
relations of the potential; moreover, the mean distancel̄ a
between consecutive minima in the velocity of the particle
a scale invariant quantity over all length scales for which
collective interaction between the particle and the monom

FIG. 7. Velocity of the particle along the polymer for differe
values ofs and a54. ~a! s50.1. ~b! s51. ~c! s510. ~d! s
5100. Note that the statistical structure of the velocity no lon
changes for large values ofs. The graphs were obtained by usin
the same probability distribution of charges as in Fig. 2.
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FIG. 8. Velocity of the particle through the polymer for differe
values ofa and s5100, plotted as a function of thex position
measured ins units (x/s). The charge probability distribution is
the same as in Fig. 2.~a! In this casea52. The number of relevan
minima is N522 and the interval length isI x580. So the mean

distance between minima in the interval shown isl̄ 2580/22

53.6363. ~b! a510, N531, and I x550; therefore l̄ 10550/31

51.6129. ~c! a520 and l̄ 20520/1751.1764. ~d! a540 and l̄ 40

515/1850.8333.

TABLE I. Parameter ranges for which the ‘‘screened’’ intera
tion potential given by Eq.~11! satisfies or does not satisfy th
Lindeberg condition.

U~y!5
1

@y21s2#a/2
expS2 g

2
~y21s2!bD

Lindeberg condition holds

0,b,1 and anya Bounded potential
b50 anda.1 Bounded potential
b50 and 1/2,a<1 Localized potential
b50 and21/2,a<1/2 Rough potential

Lindeberg condition does not hold

b.1 and anya Very short range potential
b50 anda<21/2 Nondifferentiable potential
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prevails~i.e., for sufficiently large values ofs).
Finally, we believe that it is important to determine th

distribution function of the distance between consecut
minima in the velocity of the particle~or in the potential
landscape!, in order to calculate some quantities related
the transport along a random potential, such as relaxatio
passage times. Also, the analysis that we have done sh
be extended to more than one dimension, and to poten
with correlated charge distributions. The latter may produ
processes beyond the correlated Gaussian ones we have
with here. Work in this direction is in progress.
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APPENDIX

1. Lindeberg Condition

The Lindeberg condition can be stated as follows@7#: Let
j1 ,j2 , . . . ,jm be independent random variables who
probability distributions are P1 ,P2 , . . . ,Pm , respectively.
Suppose that these distributions are such that the mean v
E(jk)50, Var(j k)5d k

2, and let sm
2 be

sm
2 5d1

21d2
21•••1dm

2 . ~A1!

If for every t.0 the following equality holds:

lim
m→`

sm
22(

k51

m E
uyu.tsm

y2Pk~y!dy50, ~A2!

then the probability distribution of the normalized sum

xm5~j11j21•••1jm!/sm

will tend to a Gaussian distribution with zero mean and u
tary variance as m→`.

In the problem we are considering, the overall poten
V(x) is given by

V~x!5 (
k52m

m

Us,k
a ~x!

@see Eq.~4!#, where eachUs,k
a (x) is a random variable

whose probability densityPk(u) is as in Eq.~6!. For a fixed
positionx, the variancedk

2(x) of the individual random po-
tential Us,k

a (x) is given by

dk
2~x!5E

2`

`

@Us,k
a ~x!#2Pk„Us,k

a ~x!…dUs,k
a ~x!

5E
2`

`

@ags,k
a ~x!#2

1

gs,k
a ~x!

PS Us,k
a ~x!

gs,k
a ~x!

D d@ags,k
a ~x!#

5@gs,k
a ~x!#2E

2`

`

a2P~a!da5D2@gs,k
a ~x!#2,
e

or
uld
ls
e
ealt

r

ue

-

l

where as beforeD2 is the second moment ofP(a). There-
fore, thesm

2 variable of Eq.~A1! is

sm
2 5D2 (

k52m

m

@gs,k
a ~x!#2.

It is clear that in the limitm→` and for large values of
s, the sum in the above expression can be approximate
an integral, giving

J0
2[ lim

m→`

sm
2 5D2E

2`

`

@gs
a~y!#2dy. ~A3!

Consequently, the Lindeberg condition, when applied to
random potentialV(x), transforms into

lim
s→`

lim
m→`

1

sm
2 (

k52m

m E
uuu.tsm

u2Pk~u!du50,

where we have also taken the limits→` attending to the
considerations made in Sec. IV. Taking into account Eq.~6!
and Eq. ~A3!, and replacing the sum by an integral, th
above equation is equivalent to

lim
s→`

1

J0
2E

2`

`

dy@gs
a~y!#2E

uau.tJ0 /gs
a(y)

a2P~a!da50,

which is Eq.~8!.

2. Well behaved potentials

According to Sec. IV, to prove that some kind of pote
tials Us(x)5ags(x) satisfy the Lindeberg condition, we
must show that

lim
s→`

I ~s!50, ~A4!

whereI (s) is defined as

I ~s!5J0
22E

2`

`

dygs~y!] 2E
uau.tJ0 /gs(y)

a2P~a!da.

~A5!

Suppose thatgs(x) is given as in Eq.~11!:

gs~x!5a
exp@2~g/2!~x21s2!b#

~x21s2!a/2

~we have suppressed the superscriptsa and b in order to
simplify the notation!. ThenJ0

25D2*2`
` @gs(y)#2dy is given

by

J0
25D2s122aE

2`

` exp@2gs2b~11t2!b#

~11t2!a
dt. ~A6!

If s is very large, then the exponential factor in the abo
integral goes to zero very quickly, and the main contributi
to the integral comes from a very narrow interval around
origin. Therefore, for large values ofs we can approximate
J0

2 as



th

s
l

,

pe

to

to

-
n

s

PRE 61 6147STATISTICAL CHARACTERIZATION OF RANDOM . . .
J0
2'D2s122aE

2«

« exp@2gs2b~11t2!b#

~11t2!a
dt,

where«!1. We can further expand (11t2)b in powers oft,
retaining up to the second order terms, and in view of
small value of« we can simply take (11t2)a51, which
lead us to

J0
2'D2s122aegs2bE

2«

«

e2gbs2bt2dt

'D2A p

gb
s12b22ae2gs2b

. ~A7!

Now, we need to show thatgs(x)/J0→0 ass→`. To do
this, we note that for very larges the square of the function
gs(x) can be written as

@gs~x!#25s22a
exp@2gs2b~11b~x2/s2!1••• !#

11a ~x2/s2! 1•••

.

Therefore,@gs(x)/J0#2 is

S gs~x!

J0
D 2

'
1

D2
Agb

p
s2a1b21egs2b

s2a

3
exp@2gs2b~11b~x2/s2!1••• !#

11a~x2/s2!1•••

'
1

D2
Agb

p
sb21

exp@2gs2b~b~x2/s2!1••• !#

11a~x2/s2!1•••

,

and it is easy to see that the above expression vanishe
s→`. Thus, we can makeJ0 /gs(x) bigger than any rea
number just by choosings large enough.

On the other hand, we are assuming thatP(a) has a well
defined second moment and thereforeP(a) must decay to
zero faster than 1/uau3 as uau→`. Hence, we can suppose
without loss of generality, thatP(a);1/uau31« as uau→`,
for some«.0. The above, of course, represents an up
bound for the asymptotic behavior ofP(a).

As we have seen, ifs is very large, thenJ0 /gs(y) is also
very large and therefore we can use the above asymp
behavior ofP(a) to computeI (s), which leads to

I ~s!'J0
22E

2`

`

dy@gs
a~y!#2E

tuau.tJ0 /gs(y)
a2

1

uau31«
da

5
2t2«

« E
2`

` S gs~y!

J0
D 21«

dy

5
2t2«

«
J0

2(21«)E
2`

`

@gs~y!#21«dy

5
2t2«

«
J0

2(21«)s122a8E
2`

` exp@2g8s2b~11y2!b#

~11y2!a8
dy,

wherea85a(11«/2) andg85g(11«/2). But the last in-
tegral is exactly the same as the one in Eq.~A6! with the
e

as

r

tic

parametersa and g replaced bya8 and g8, respectively.
The value of this integral for very larges is given in Eq.
~A7! ~with a8 and g8 instead ofa and g). Therefore, the
asymptotic dependence ofI (s) on s is given by

I ~s!'
2t2«

D21««A11«/2
S gb

p D «/4

s (b21)«/2,

which evidently vanishes ass→`, providedb,1. Thus, if
0<b,1 the Lindeberg condition is satisfied, as we want
show.

3. Fourier transforms

In this section we explain how to obtain Eq.~35!. We start
by Fourier transforming Eq.~32!, which leads to

v̂~l!5 ilĝs
a~l! (

k52m

m

ake
2 ilk1

2F0

l
sin~ml!. ~A8!

The power spectrum of the velocity is given byuv̂(l)u2.
So by multiplying Eq.~A8! by its complex conjugate we
obtain

uv̂~l!u25l2uĝs
a~l!u2U (

k52m

m

ake
2 ilkU2

1
4F0

2

l2
sin2~ml!

14F0ĝs
a~l!sin~ml!ReS (

k52m

m

ake
2 ilkD , ~A9!

where we have used the fact thatĝs
a(l) is a real function. By

averaging Eq.~A9! in the ensemble of all possible realiza
tions of theak charges, using the probability density functio
P(a), we obtain

^uv̂~l!u2&5l2uĝs
a~l!u2K U (

k52m

m

ake
2 ilkU2L 1

4F0
2

l2
sin2~ml!

14F0ĝs
a~l!ReS (

k52m

m

^ak&e
2 ilkD ,

and remembering that^ak&50, the last equation transform
into

^uv̂~l!u2&5l2uĝs
a~l!u2K U (

k52m

m

ake
2 ilkU2L

1
4F0

2

l2
sin2~ml!. ~A10!

The sum appearing in Eq.~A10! can be divided into two
parts:

U (
k52m

m

ake
2 ilkU2

5S (
k52m

m

ake
2 ilkD S (

l 52m

m

ale
il l D

5 (
k52m

m

ak
21(

kÞ l

m

akale
il( l 2k).
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Averaging the last expression with the probability dens
function P(a) leads us to the following result:

K U (
k52m

m

ake
2 ilkU2L 5 (

k52m

m

^ak
2&1(

kÞ l

m

^akal&e
il( l 2k)

5^ak
2& (

k52m

m

11^akal&(
kÞ l

m

eil( l 2k)

5~m11!D21^ak&^al&(
kÞ l

m

eil( l 2k)

5~m11!D2,

where we have used the statistical independence of the
of

r-
ra
ich
ri-

ablesak to write ^akal&5^ak&^al&50. Inserting the last re-
sult into Eq.~A10!, we obtain

^uv̂~l!u2&5l2uĝs
a~l!u2~m11!D21

4F0
2

l2
sin2~ml!.

~A11!

Note that the second term on the right hand side of
~A11! is just the power spectrum of the constant forceF
given in Eq.~30!. This term contributes to the overall powe
spectrum of the velocity just with a very sharp peak atl
50 ~for m→` it is a Dirac delta function!, and does not
carry along any useful information on the potential structu
For this reason, this term has been omitted from the anal
in the main body of the work.
d.

n
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-

e,

has
.

@1# J. M. Ziman,Models of Disorder: The Theoretical Physics
Homogeneously Disordered Systems~Cambridge University
Press, Cambridge, England, 1979!.

@2# A. H. Romero and J. M. Sancho, Phys. Rev. E58, 2833
~1998!.

@3# A. Engel and F. Moss, Phys. Rev. A38, 571 ~1988!.
@4# S. O. Rice, Bell Syst. Tech. J.24, 41 ~1945!.
@5# P. W. Atkins,Physical Chemistry, 3rd ed.~Oxford University

Press, London, 1986!.
@6# If the chargesak along the polymer are correlated with afinite

correlation lengthj, we can always ‘‘break’’ the polymer into
blocks of sizej which are not correlated. We can then inte
pret each block as a new particle whose charge is the ave
of the charges inside the block, obtaining a situation in wh
ge

the new block charges along the polymer are not correlate
@7# William Feller, An Introduction to Probability Theory and its

Applications2nd ed.~John Wiley and Sons, New York, 1978!,
Vol. 2.

@8# H. Risken,The Fokker-Planck Equation: Methods of Solutio
and Applications~Springer, Berlin, 1989!.

@9# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B.
Flannery,Numerical Recipes in C: The Art of Scientific Com
puting, 2nd ed. ~Cambridge University Press, Cambridg
England, 1992!.

@10# For the opposite limiting case whens→0, dominant frequen-
cies appear which are related to the potential disorder, as
been shown by M. Aldana, F. Ca´zarez-Bush, G. Cocho, and G
Martı́nez-Mekler, Physica A257, 119 ~1998!.


