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Statistical characterization of random electrostatic potentials
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In this work we study statistical properties of random electrostatic potentials generated by one dimensional
lattices with random charges. We show that the resulting random potentials are correlated Gaussian processes,
satisfying the Lindeberg version of the central limit theorem, if certain restrictions are imposed on the indi-
vidual potentials generated by the particles on the lattice. Since most of the point-particle electrostatic poten-
tials occurring in nature satisfy the Lindeberg condition, the correlation properties of the random potentials are
not arbitrary and must comply with the central limit theorem. Based on this theorem we can obtain explicit
expressions for these correlations. We thus are able to give a characterization of a broad class of potentials
yielding feasible physical scenarios. We illustrate some consequences of our findings by considering dynamical
properties of a test particle interacting with the lattice. We show how the long range correlations generate
statistical features in these properties, which are best exhibited when considering different length scales.

PACS numbegps): 05.40—a, 02.50.Ey

[. INTRODUCTION monomers are precisely the lattice particles. Thus, from now
on we will refer to the lattice as the “polymer” and to the

Random potentials have long been an integral part of théattice particles as the “monomers.”
modeling of disordered systeris|. They appear in the de-  The chargeQ can move along the polymer, but it is con-
scription of localization phenomena, anomalous transporttrained to remain at a constant distanc@erpendicular to
pinning, glassy states, intracellular transport, moleculathe polymer; under these circumstances, the dynamics of the
ratchets, and in many other fields of physics, chemistry an@article is one dimensional. The chamggof each monomer
biology. However, despite this wide range of applicability of is either a discrete or continuous random variable whose
random potentials, their statistical properties are usually pogerobability density functionP(q) is the same for all the
tulated as part of the model, with little or no emphasis onmonomers. It is important to mention that by “charged par-
whether a potential landscape with the proposed propertigiécle” we do not mean just Coulombic particles. Both the
can be physically generated or @3] chargeQ and each one of the monomer charggsould be,

It has also become clear by now that spatial correlationénstead, particles having permanent electric dipoles, polariz-
of the potentials play a crucial role in the processes unde@ble particles with induced electric dipoles, molecules inter-
investigation. In many physical systems, these correlationgcting through van der Waals forces, etc. As we shall see
are present because realistic potentials allow particles to idater, the potential experienced by the partiQewill be a
teract at a distance. Even a completely uncorrelated distribisaussian process for most physically relevant interaction po-
tion of random charges will give rise to a spatially correlatedtentials.
potential landscape. In the next section we discuss the type of electrostatic

In this work we study the statistical properties of the elec-random potential generated by the system shown in Fig. 1. In
trostatic potential generated by a set of random charges agur calculations we consider general point-particle electro-
ranged on a one dimensional lattice, interacting with a tesstatic potential as a concrete example of the kind of poten-
particle placed a distance away. Our main purpose is to givéials we will be working with, and the parameters involved in
a statistical characterization of the interaction potential, andheir specification. The results presented here can be gener-
to present a simple formalism to deal with its joint probabil- alized to a wider class of interaction potentials, as will be
ity distribution function. In doing so, we shall see that mostdone in Sec. IV, where we consider “screened” potentials.
of the electrostatic potentials occurring in nature satisfy the In Sec. Ill we analyze the integrability properties of the
hypothesis of the central limit theorem, and therefore not

every imaginable spatial correlation of the random potentials Q

may be physically achievable. As an example, we study the * g

dynamics of an overdamped test particle forced to move

along the random potential. By analyzing the Fourier spec- 0o 4 4 6 a,

trum of the particle’s velocity, we show spatial statistical -/
features and scaling properties arising from the correlation @——0—0—0—0—0—0—0—0

of the potential. —
The system that we shall study is shown schematically in d=1
Fig. 1, where a charged test particeinteracts with a one FIG. 1. Diagram illustrating the particle polymer basic setup:

dimensional lattice composed of charged point particles d=1 is the distance between the monomeris, the position of the
(n—o0) separated by a constant distanicel. We can think  particle Q measured from the polymer origin, andis the perpen-
of this one dimensional lattice as a very large polymer whoselicular distance from the particle to the polymer.
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@ndividual potentials gel_"nerated by each one of the_ monomers UZ L (X) =a,g2(x—k), )
in the polymer, and discuss how these properties lead to
different types of statistical characterizations. In Sec. IV wewherea,=KQq, andg“(y) is defined as
state the conditions that these individual potentials need to
fulfill in order to have a statistical description based on the
central limit theorem. If the Lindeberg condition holds, the g.(y)=
overall random potentidii.e., the potential generated by the
whole polymey will be a Gaussian processes. In this section Bv summina up the contribution of each one of the
we also show that the electrostatic potentials most commonlxh y thg pl btain th I int "
occurring in nature satisfy the Lindeberg condition. Once we arges on e polymer, we obtain the overal interaction
have ensured that the random potential is a correlated Gauég(_)tennaIV(x) between the polymer and the test chafge
ian process, we proceed to find the parameters characterizirﬁ]&mely’
its probability distribution. In Sec. V we present a simple %
formalism to compute the two-point joint probability distri- V()= > U% ()= > agix—k) (4
bution of the random potential explicitly. We should mention k=—o o
that our framework and many formal results parallel those of
Rice [4] in the context of noise. This is to be expected as (We have assumed that the polymer of infinite lenghtote
after all, we are also considering an additive process. Nevethat the variables, have the same probability distribution
theless, as we are dealing with potentials, for which classiP(d) except for a constant normalization factor which can
cally only the differences are physically relevant, we imposealways be taken as unity. Therefore, from now on we shall
different and much less stringent restrictions on our element&ake no distinction betweeny, anday .
of description. Also, we make a detailed classification of the For our analysis we shall require the probability distribu-
statistics of the random potential in terms of the nature of thdion P(a) associated with the variableg to satisfy the fol-
physical entities from which the potential arises. lowing conditions:(a) (ay)=/'>aP(a)da=0. (b) (aja)
In Sec. VI we illustrate how our results may be of use in=(a;){(a,)=0. (c) P(a)=0 if |a|>R, for some real number
the study of the dynamics of the particle along the polymerR>0.
We show that the velocity of the particle presents spatial In all other aspects, the probability distributiét(a) is
statistical features that are a direct consequence of the loraybitrary. Condition(a) is not essential and is introduced just
range correlation of the individual potentials. These featureto simplify calculations; physically, it corresponds to appro-
are exhibited in the power spectrum of the velocity, and arepriately setting the zero of the potential energy. Condition
related to the scale invariance of the statistical structure ofb) establishes that the monomer charggslong the poly-
the potentials. Finally, we conclude this work in Sec. VII mer are statistically independent one from the other, a prop-
with a brief summary and discussion of our results, anderty which is clearly inherited by the variableg [6]. Fi-
present a classification of potentials in terms of the Linde-nally, condition (c) ensures that we are considering finite
berg condition. charges. In the next section we shall see that, for the conver-
gence of Eq(4), in some cases this condition can be relaxed
Il. RANDOM POTENTIALS by requiring only thatP(a) has a well defined second mo-
ment. Nevertheless, when we analyze the dynamics ofthe
Commonly, the interaction potenti&)(r) between two particle along the polymer, we shall require that be
charged particleg; andq, separated by a distancg, can  pounded.

be representEd by means of a potential law in the fO”OWing At this point’ it is worth mentioning that the parameter

3

(y2+ o,2)a/2 ’

)

way [5]: besides being the perpendicular distance from the polymer to
the test particle, can be considered as the length scale at

U(r =K 4192 2 which the individual potential&);; . (x) contribute apprecia-

re, ' bly to the overall interaction potentidl(x) at a particular

positionx [or, in other wordsg is the length scale at which

whereK is a constant. The exponeattell us what kind of  the functiong;(y) is appreciably different from zefolIn
interaction we are dealing witle=1 corresponds to a Cou- Fig. 2 we depict three graphs of the potential given by ex-
lomb interaction,a=2 a dipolar interactiono=3 an ion-  pression(4) for different values ofo, and a=4. These
induced dipole interaction, and so on. We should keep irgraphs were obtained by allowing the variakdgdo take the
mind that byq, and g, we do not mean just Coulombic values{*1, £2, 3} with the same probabilitjthrough-
charges. They could also be dipolar moments, electrical posut this work we shall use this distribution of charges since
larizabilities, etc. we will see that some dynamical properties of the particle do

In the problem shown schematically in Fig. 1 we supposelot depend on the specific statistical nature of the chaages
that all the monomer chargés,} are of the same physical provided the probability distributiorP(a) satisfies condi-
type(e.g., they are all ions, or dipoles, ét@nd that the only tions (a), (b), and (c) mentioned abovie We can observe
thing changing from one charge to another is its value, whichirom this figure that the potential landscape becomes smooth
is an independent random variable with probability distribu-aso increasegnote the scale differences in the grapfihis
tion function P(q). The interaction potential between the smoothness of the potential as takes larger values is a
kth-monomer with charge), on the polymer and the test consequence of the long range correlations among the indi-
particleQ is then given by vidual potentialdJ 7 ,(x), i.e., it is due to the fact that when
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- - - - A random potentiaV(x) that can be written in the form

[

Vo= 2 ag(x=k), ®)
-4 0 10 20 30 20 50 where thea,’s are random variables ang(y) is a given
(a) x function, will be meaningful or not according to the integra-

bility properties ofg(y). For our purposes, it will be conve-
nient to distinguish between the three following cases.

5 (1) [Z.lo(y)|dy<ee. In this caseg(y) is absolutely in-
0 WWWWMM tegrable and no problems arise, since the sum in (By.

10 T T T T

5| g remains finite, and therefor&(x) is well defined for
~10 . . . . every X. Indeed, it is easy to see that(x) is bounded,
Vix) ° 20 0 m 80 100 since  [V(X)|=|Zi- _.ag(x—K)|<maxadZ_ .|g(x—K)|
a0 x <R[”_|g(y)|dy, and we are supposing that this integral con-
' ' ' ' verges. We shall refer to this situation as Hminded poten-
10 | . tial case
(2) [*.|g(y)|dy does not converge, byt [g(y)]?dy
-0 <. Given that(a,)=0, the random potentiaV(x) does
-30 : : : : not diverge at any positioxbut, sinceg(y) is not absolutely
200 400 © 600 800 1000 integrable,V(x) can acquire very large values. However,
x V(x) has a typical value given by its variance, which is finite
65 : : : as can be seen:
15 . varfV(x)]=([V()1?)
35 | g - 2
| | | =< > akg(x—k>) >
0 2000 4000 6000 8000
“@ ¥ =<k2_m a gk 3 aig<x—i>>
FIG. 2. Interaction potential between the particle and the poly-

mer for successively increasing values @f and «=4, using a
probability distribution of charges for which the variablgs take
the values+1,+2,+3 with the same probabilita) o=0.1. (b)
o=1. (c) 0=10. (d) 0=100. In all these cases the amplitude of
the potential has been scaled by a facir Note that the interac- + E (aja)g(x—i)g(x—k)
tion potential becomes smooth asincreases. i#k

2 (@)L=’

©

o increases, more and more monomers on the polymer con- =A2 > [g(x—k)]2
tribute to the overall potential at a particular positiariThe k=—o

latter can be expressed by saying that, when the paficle "

moves away, it is unable to “see” the fine structure of the ~A2J [g(y)]?dy<ce.
potential, resolving only the coarse structure, while if the -

particle is very near to the polymer, it “feels” only the

: : where A%=(a?) is the second moment ¢¥(a). To obtain
monomer just below it.

this result we have made use of the propertigsand (b)
imposed onP(a) in the preceding section, and instead of
IIl. INTEGRABILITY PROPERTIES property (c), we only require the existence af. Since in

this case the random potential has a typical value, we will
It is clear that at a fixed positiox the overall interaction refer to this situation as thlecalized potential case

potentialV(x) is the sum of a very large number of indepen-  (3) [ [g(y)]2dy does not converge. Ifj(y) is not
dent random variablegUg (x)} each of them having its square integrable the sum in E@) leads to divergences.
own probability distribution. We should then expect that inThis is due to the fact that the individual potentidlg(x)
some appropriate limit the central limit theorem could be=3g, g(x—k) decay so slowly that the contributions coming
applied in order to find the-point joint probability distribu-  from the charge fluctuations in the system do not vanish fast
tion P(V(xy),V(X2), . .. V(X)) which statistically charac- enough nor cancel out efficiently. This can be easily visual-
terizes the potentia¥/(x). For this to happen it is necessary ized in the simple case in whict(x) is constant and the
for the sum in Eq(4) to remain finite for every value of Of  superposition oh of these individual potentials generated by
course, the potentiald; ,(x) given in Egs.(2) and(3) sat-  the random charges yields the same “random walk” at every

isfy the above condition as long as>1, but in general, for point in space, whose value typically diverges as the square
other kinds of interaction potentials, this may not be the caseoot of n.
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This case can be further characterized in two ways, cor-
responding to different physical behaviors.

Rough potential In many instances, the quantities of
physical interest are the forces derived from the potentials. If U0 | _
these forces are square integrable, then the central limit theo-
rem can be applied to them, instead of to the potentials. L .
Equation(5) is then substituted by an analogous one involv-
ing the derivatives of the functiog(y). Also, there are situ- - 1
ations in which the potential landscape is of particular rel-
evance to the physical problem, as would be the case in
Brownian transport and other escape rate related phenomena.
In these situations, the size and distribution of the potential
wells and barriers are the crucial elements for a description. ' : '
Hence, we are interested in characterizing the statistical
properties of “potential differences,” and we can do this by
considering as the random variables involved in the descrip-
tion the quantities W,(x) defined as {W(x)=Uy(x) U (x)
—Ui(y), k=1,2,3...}, which is equivalent to setting the L _
potential to zero at the arbitrary positignif square integra-
bility holds for W,(x), we can again invoke the central limit - 1
theorem for these quantities. In general, a property arising
under such circumstances is that the resulting random poten-
tial is no longer “regular,” but rather it becomes rough at

large length scales in the sense .tl’{év(xl)_v(XZ)]_2> FIG. 3. The individual potentiall, ,(x) generated by théth
~[x1—xo|", wherew is a positive scaling exponent having to monomer at positiox=k in the polymer.(a) If the range of the
do with the specific type of interaction we are considering. potential is extremely short, or i has a very small value, then the

Nondifferentiable potentialsWhen neither the potential contribution ofU,,, at positionx, is completely negligible, pro-
derivatives nor the potential differences are square intevidedk is far enough fromx,. (b) By increasing the range of the
grable, the resulting random potential is nowhere differenpotential, or allowingo to acquire larger and larger values, the
tiable, which is not physically meaningful. The above occurspotential “‘spreads out” having now an appreciable contribution at
when the individual potentials increase fast enough with dispositionxg.

Xy k x

(b) 17 k x

tance.

It is clear so far that in order to perform a statistical analy- u
sis of the random potentid(x) based upon the central limit Py(u)= P( ) , (6)
theorem it is necessary for the individual potentidigx) to Yo k(X)) \ ggk(X)

be bounded or localized. Nevertheless, this is a necessary o _
condition, but not a sufficient one, as we will see in the nextwhere for simplicity we have definegt; .(x) as
section, where we show that another way for the central limit

theorem to fail is if the range of interaction is extremely g5 k(X)=gg(x—Kk). (7)
narrow. For the time being, we should mention that the class
of potentialsUg (x) given in Egs.(2) and(3) give rise to Equation(6) shows that the random variableg ,(x) are

three of the cases mentioned above, depending on the valie general not equally distributed. Therefore, if we want to
of a: if @>1 we are in the bounded potential case, while ifdetermine  the probability  distribution  function

1/2<a<1 we have the localized potential case and ifP(V(Xy),V(X,), ... V(X)) characterizing the overall po-
—1/2< a<1/2 the rough potential case. In what follows, we tential V(x), we have to make use of the Lindeberg version
shall always assume that the interaction potentials we aref the CLT, which states thaP(V(x1),V(X,), ... V(X))
dealing with are bounded or localizéde., g(y) is square approaches a Gaussian distribution whenever the Lindeberg
integrablég. condition holdq7] (see the Appendix
We now turn to the question of the “appropriate limit” in
IV. CENTRAL LIMIT THEOREM which the CLT can be applied to our problem. First, we
should remark that the Lindeberg condition requires that the
We now proceed to findP(V(x;),V(X5), ... ,V(X/)), number of terms appreciably contributing to the sum in Eq.

namely, the -point joint probability density function charac- (4) be very large(formally, infinity). Note that having an
terizing V(x). Our aim is to show that in an appropriate, infinite number of monomers in the polymer does not guar-
physically relevant limit, we can apply the central limit theo- antee that the number of terms appreciably contributing to
rem (CLT) so thatV(x) becomes a Gaussian process. Notethe overall potential is also infinite. This situation is depicted
that in general the random variablg§ ,(x) are not equally ~ very schematically in Fig. 3, where we show the individual
distributed and have different probability density functions.potentialUg . (x) generated by thkth monomer of the poly-

If we let P, (u) be the probability density function associated mer, for two different values of the parameter|f o is very
with the random variabléJg (x), it follows from Eq.(2)  small, we can make the contribution Of7 ,(x) completely
that P, (u) andP(a) are related by the following equation: negligible at positiorx by takingk sufficiently far away from
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the positionx. When we say “completely negligible” we see that even the Yukawa potential has a long enough range
mean that th&J;  (x) contribution is negligible with respect to satisfy the Lindeberg condition.
to that due to the nearest monomer to thgosition. Under If =1 the interaction becomes very short range, and
these circumstances, the sum in E4) will contain a re- under these circumstances the CLT does not hold. The rea-
duced number of appreciably contributing terms, regardlesson is that in this case the individual potentials are of such
of the polymer size. On the other hand,dfis very large, ~extremely short range that for a given positigrwe are not
then the potential ® . (x) spreads out and its contribution is dealing with an infinite number of random variables in Eq.
comparable to that coming from the nearest monomet. to (4), but rather with just a few of thertthose that are in the
The above means that when earticle is very close to the Vicinity of the Q particle and therefore the only ones that
polymer(very smallo), it tends to “feel” the monomer just appreciably contribute to the overall potentiarhe above
below it, while if Q is far enough from the polymer, then a considerations make it evident that the Lindeberg condition
collective interaction between particle and polymer prevailsmay not be satisfied either because the individual potentials
with more terms contributing significantly to E¢4) aso  do not decay to zero sufficiently rapidly with distance and
increases. consequently they are not bounded or localigggliare inte-
From the above it is clear that, in order to apply the CLT,drable, or because the individual potentials decay extremely
we must require both that the polymer has an infinite numbefapidly to zero with the distanoery short range or strictly
of monomers and that has a large enough value. Under finite range, which implies that at any positiom only a
these circumstances, the Lindeberg condition stated for thgmall number of random variables contribute to the overall
sum in Eq.(4) is (see the Appendjx potentialV(x).
Once we have ensured that the Lindeberg condition holds
1 (= for the class of potentials we are considering, it follows
lim _zf dy[gf;(y)]zf _a’P(a)da=0, (8 that the r-point joint probability  distribution
g Jod = 1a1>130/5,(») PV(x1),V(Xz), . .. V(X)) will be Gaussian for very large
o. This is not to say that the resulting distribution cannot be
Gaussian if the above condition does not hold, as the above
o w is a sufficient but not a necessary condition. Indeed, if the
J?)EAZJ [9%(y)]%dy, Azzf a’P(a)da. (9 Lindeberg condition is not satisfied, the random potential
’w ’°° V(x) may or may not be described by a Gaussian distribu-
tion. In what follows, we will focus our attention on poten-
tials for which the Lindeberg condition is satisfied.

for any real numbet>0, whereJS is given by

The Lindeberg condition is sufficient for the CLT to be
valid. This condition ensures thag [and therefore the ran-
dom potentialV(x) given in Eq.(4)], is the sum of many
contributions, each of them negligible compared vv]ﬁmit- V. PROBABILITY DISTRIBUTION
self, and imposes three restrictions on the potentigig(x) OF THE RANDOM POTENTIAL

for which our theory applies, i.e(1) g%(y) must be square
integrable; (2) g;(y)/Jo—0 aso—c; and(3) P(a) must  pry(x,),V(x,), ... V(x,)) explicitly. In order to make our
has a well defined second moment. _ approach as simple as possible, we will focus on the two-
For this reason we have assumed that the potentialgaint joint probability distribution functioP(V(xy),V(xy)).
UG, k(x) are bounded or localized and tfaa) is bounded Al the results presented here can easily be generalized to the
in the sense tha®(a) =0 if |a|>R. On the other hand, itis ¢ase ofr sites.
clear that in the rough pOtential case, the Lindeberg condi- We start by assuming that the polymer is Composed of a
tion applies to the potential derivativéise., the forcesorto  finite number of monomers, say The basic element in our
the potential differences. analysis is that the potenti®|(x) is a random variable con-
It is straightforward to show that the class of potentialssisting of the sum of the potentiald® ,(x) due to then
Ug k(X) given in Egs.(2) and(3) satisfy the Lindeberg con-  monomers in the polymer, and that these are independent
dition if a>1/2, and that if—1/2< a<1/2 this condition is  random variables whose probability distributions are given
satisfied by the derivatives or differences of these potential%y Eq (6) The genera' scheme is to state a recurrence rela-
Futhermore, in the Appendix we show that this condition istjon for the two-point joint probability distribution, labeled
also satisfied by the wider class of “screened potentials” \ith the numben of monomers on the polymer, and to solve
@ « this recurrence relation in the limit—oc and for very large
Uvi(x): 295" (x— k), (10 o. As we have seen, the CLT ensures that the resultant two-
2. g point joint probability distributiorP(V(x4),V(x5)) will be a
exfd — (v/2)(y“+09)"] (11) Gaussian distribution for which we need to determine the
(y?+ o)« ' parameters characterizing it.
In what follows, it will be useful to distinguish between
as long as &pB<1, for every @. The factor exp—(y/  the interaction potential generated by a polymer with 1
2)(y?+ o)#] allows for the possibility that the potential be- monomers and that generated by a polymer witmono-
tween the polymer and the test particle is “screened.” Inmers. Thus, we will write a¥,,_1(x) andV,(x) the poten-
particular, if 3=1/2, Eq.(11) transforms into a Yukawa po- tial landscapes generated by the—(1)-polymer and the
tential, which in the literature is always referred to as an-polymer respectively. Suppose first that the polymer is
“short range potential.” However, from the above we canmade up oh—1 monomers whose charges arg a,, ...,

In this section we present a simple formalism to compute

92P(y)=
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V,(x1) andV,(x,) at positionsx; andx,. Taking into ac-
- . count thatP(a) is the probability distribution of all the,’s,
the relationship betwee®,_; and P, is given by the fol-
lowing integral relation:

Pa(Vn(X1),Va(x2)) = ficpn—l(vn(xl) —agy n(X1),Va(x2)

(@) —agy ,(X2))P(a)da, (13

" This last equation can be handled better in Fourier space,
r ,\ EERNA ] since there the convolution transforms into a simple product.

AU : A Thus, if we call¢; and ¢, the Fourier conjugate variables of
V(x) BVAR ’ / V,(x,) and V,(x,), respectively, by Fourier transforming
NS 1] Eq. (13) we arrive at the equivalent expression

e Po(£1,€2)=Pa-1(é1,E) PG5 n(x0) £ 95 n(X2) £2).
(b) * (14

— In order to solve this recurrence equation we need to de-
termine P;(V1(x1),V1(X2)), namely, the two-point joint

probability distribution in the case when there is just one
A /\ /\ M monomer in the “polymer.” To do this, we should note that,
/\ in such a case, with just one particle placedxatl, the

ERVARERA \] W v | overall potentiaV(x) is simply given by

1z 5. ('c)' TR V(x)=V1(x)=a1g; 1(x). (19

FIG. 4. (a) Potential landscape generated by a polymer made ug hus the potential will have the valug (x;) atx=x; if and
of n—1 monomers(b) Another monomer is added at positian only if the variablea, has the value
=n. This new monomer contributes to the overall potential with the
termU, ,(x) (solid line). (c) The resulting potential landscape after Vi(Xy)
the incorporation of thath monomer contribution. As can be seen, a; = .
the curve is different from the one depicted(a); hence, the prob- gﬁ,l(xl)
ability distribution also changes.

(16)

The probability for this to happen is given b , with
a,_i. These charges generate the interaction potentiql:l:p y PP g y E@)

Voo 1(x) = =RZ1a,g% () which is characterized by the two-
point probability distribution P,_1(V,,—1(X1),Vn-1(X2)).
When we add another monomer with chaegeto the poly-
mer end(see Fig. 4, it contributes to the overall potential
with the termUy, \(x) =a,g; ,(X), so that now the interac-

tionn potenatial is_given byV,(x)=Vi-1(X)+@95n(X)  oOncev(x) has acquired the valug,(x;) atx=x, its value
=2-189,k(X). The new term changes the potential land-y/, (x,) at another positiox=x, is constrained to be
scape, transforming its probability distribution into

Pa(Vin(X1),Vih(X5)). Now, if V,(x) takes the specific values
V,(x1) andV,(x,) atx; andx,, respectively, theV,_;(x) Vi(Xp) = 8,0% (Xp) = Vi(xy)
should havethe valuesV,, ;(x;)=Vn(x1) —a,9% ,(x1) and PR EERT e (xy)
Vin-1(X2) =Vn(X2) —ang; n(X2) at the corresponding posi-
tions, and the probability for this to happen is

P1(Vi(X1)=

Vi(xq) ) a7

g5.1(X1) <9g,1(X1)

g(o;',l(XZ)i (18)

and the conditional probability? (V(x,)|V(x,)) for this to
Pa-1(Va-1(X0), Vo 1(%2)) happen is simply

= nfl[vn(xl)_angg,n(xl)’vn(xz)_angg,n(xz)]- Vi(Xq)
P(V(x)|V(X2))= 8| Vi(X2) = ————0g7.1(X2)
12 Jo1(X1) B
We can now obtairP,(V,(X1),Vh(X2)) in terms of the
last equation, multiplying it byP(a,,) and then summing up where(-) is the Dirac delta function. Therefore, the prob-
over all the possible values df, leading to the values ability distributionP1(V1(X1),V1(X5)) is
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V . m
P1r(V1(X1),V1(X2))= — al(X1) ) Pu(ér.60)= 11 exf — 3A%(g4 k(X1) &1+ 9% (X2) €2)7]
951(X1)  \gg1(X1) k=-m
1 m
X 6| Vi(xz) = Vi) o) 1(X2)> =exp< _EAZ Z [95k(X1)é1
goa(Xy) k=-m

(19
+gf;k(X2)§2]2> .

By Fourier transforming the above equation we have
The above is clearly the characteristic function correspond-
- . N ing to a Gaussian distribution, as expected. In the limit
P1(é1,€2) =P (95 1(X1) §1+ 95 1(X2) §2), (20 and for very larger, the sums in the last expression can
be substituted by integrals, and this characteristic function

This is the initial condition for Eq(14), which then becomes acquires the final form

o Pé1,&) =exi] — 5(IFE+ 3565+ 35 461, (25
f)n(flafz):lgl I’:\)(gg,k(xl)gl'f'gg,k(xz)gz)- (21) WhereJ(Z) and‘]iz are defined as

For the sake of symmetry, we label the particles from JSZAZJ [95(2)]%dz, (26)
—m to m, and will eventually take the limin— o, indicat- o
ing that all the particles in the polymer are being considered. "
tThhe required solution to the recurrence relation Bd) is J%VZZAZJ 9%(z—%1)9%(z— x,)dz (27)
en —

By taking the inverse Fourier transform of E@5) we

m
- B N N obtain the desired two-point probability distribution
Pm(gl,fz)—kﬂm P(0g(X1) €1+ 95 (X2)€2). (22 P(V(x1),V(x,)), which is then

P(V(x1),V(x3))
Now, we are assuming that the functiog$ (x) vanish

aso grows[see Eq(3) or Eq.(11)]. Therefore, ifo is very 1 1
o o ~ . = T T exp — Z
large, the argument =g, \(X1) &1+ 9 k(X2) €2 of P(N) in N4 15
Eq. (22) is very small, and we can expand this function in
powers of its argument, keeping up to second order terms: IV (X)) 12+ IFV(X2) 12— 32 V(X1)V(X,) 08
X .
433-3%,

P(g% 1 (X1) &1+ 9% (X
(@r1x0) €1+ 8 klX2)€2) The above result shows explicitly that the process we are

=1-iu(@qg (X1) €1+ 95 ((X2) &2) dealing with is a stationary Gaussian process characterized
o . ) by J5 andJ?,. Indeed,J? , is the correlation function of the
—38%(9a k(X0 €195 (X2) E)+ - - -, (23 random potential, which'is a function only of the separation

distancgx; —x,|. The long distance correlation of the poten-
where, of coursex andA? are the first and second moments tial can be obtained by Fourier transforming Eg7) and
of the probability distributiorP(a), respectively. In view of then examining its small wave number behavior. Sidiceis

the condition(a) imposed onP(a) (see Sec. i ©=0, and 4 convolution, its Fourier transform? () is straightfor-
consequently E¢22) can be written as ward: ’

m

Pu(ér,60= 11 [1-30%(05 (0 €1+ 05,k%2) €2)°].
- " (24) The detailed behavior will depend on the nature of the
interaction, but in general terms, we can say that for the

32 0 =023 V) 2 (29

At this point it is worth while to emphasize that we are Pounded and localized potential casifs(\) —const ask

working under the assumption that the hypothesis for the-,(; otherwise,]’lz A\)~\"" for small\, where the expo-
central limit theorem holds. Thus, though we only have anenty is a measure of the “roughness” of the potential. We
second order expression in E@4), this theorem ensures have mentioned above that in the rough potential case it is
that the term & 3A%(g% ((x1) &1+ 05 k(X2) €2)° necessarilly  convenient to look at the potential differences or the poten-
comes from the expansion of e{xp%AZ(gf;,k(xl) &1 tial derivatives instead of the potential itself. It can be shown
+ 04 k(X2) &,)?]. Equation(24) can then be written as that for the potentialdJ (x) that we have referred to in



PRE 61 STATISTICAL CHARACTERIZATION OF RANDOM. .. 6143

Egs.(2) and (3) v=1—2« and hence the long distance be- 60 ' ' .
havior of the overall potentia¥(x) is given by

fla)|xg—x,|1 72 a<1/2

const a>1/2 w(x)

([V(x1) = V(x2) 1) — ol

as|x;—x,|—, wheref(«) is a function that vanishes at

20 H
a=0.

VI. DYNAMICS

. . 0 400 800 1200 1600 2000
We now illustrate how the results of the preceding sec- @)

tions can be used to determine some statistical propertie x
related to the dynamics of a test parti€emoving through a
finite polymer made up ai=2m+ 1 monomersih— ). In
order to do this, we suppose that there is an external driving
force F acting on the particle whose only purpose is to make
the particle go through the polymer, “exploring” the poten-
tial. We will restrict our analysis to thbounded force case
This is analogous to the bounded potential case which we
have referred to in Sec. Ill, but with forces instead of poten- 3
tials. Under such circumstances, we can always choose th? W
value of the forceF sufficiently large to avoid the particle
being trapped in one of the potential minima.

In principle, the force= can be time dependent, but in our
analysis we will use a steplike force given by

(b)

Fo, xe[—m,m]

(30

0, xé[—-mm], FIG. 5. (a) Single realization of the velocity of the particle along
] ) ] ] the polymer as a function of the position, corresponding to the
whereF, is a constant. The dynamics of the particle in thepotential shown in Fig. @). (b) Fourier spectrum of the above
overdamped regimf8] is given by velocity. The dashed bold curve is the corresponding averaged
ower spectrung|v(\)|?) given in Eq.(37).
N(X) - p pectrung[v(N)[) g 9.37)
IX ' should keep in mind that the external fofeenust be present
in Eqg. (32 in order to drive the system.
With the above considerations, the contribution to the
power spectrum of the velocity relevant for our purposes is

+F. (32  9ivenby

Yu=

or taking into account Eq4) we have

m

d
== 5( 2 ags(x—k)

m 2

E akefi)‘k

k=—m

(34

In Fig. 5@ we show the velocity as a function of the lo(M)[2=Ag%\)]?
position of the particle along the polymer, where we have
used the potential of Fig.(8). On the other hand, Fig.(B)
shows the power spectrum of the above velocity, numerically |f we take the average of this equation over the ensemble
obtained by means of Lomb’s methd@]. The spectrum of all the possible realizations of the charggs we obtain
shows mild frequency selection as well as a hump in the
average behavior, which, as we will see, is related to statis- <|5()\)|2>=n)\2A2[§3()\)]2 (35)
tical properties of the potential disordgt0]. For this, we

Fourier transform Eq(32), which leads to see the Appendix, or taking into account Eg9) we get

m

- - . 2F —
v()\)=i)\gf;()\)k:2_m ake"”k—Tosin(m)\), (33 <|5(}\)|2>:m\2‘352(}\)_ (36)

where, for simplicity, we have takep=1. The second term With n=m+1 the total number of monomers in the polymer.
on the right hand side of Eq33) is just the Fourier trans- The above equation shows that the statistical features of the
form of the constant forc& given in Eq.(30). Since such a Velocity exhibited in the power spectrum are a direct conse-
term does not carry information about the spatial structureguence of the potential correlations.

we can drop it from the analysis, retaining only the first term.  For the class of bounded potenti&lg (x) given in Egs.

In doing so, we keep in the power spectrum just the infor<(2) and (3) with a>1, the average power spectrum of the
mation concerning the potential structure. Nevertheless, weelocity is as follows:
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mA? (a+1)12 2 ¢ I I I
[(aN) K(a-1)doN)]%,

(37)

where K 4(2) is the Bessel function of the second kind of
orderB. In Fig. 5b) we show that the graph of E¢34) acts
as an envelope of the power spectrum. Also note from the

above equation thaf{v(\)|?) is actually a function of the
scaled variable= o \. Multipling the wave numbek by o
is equivalent, in real space, to taking the transverse distanc
o as the unit of lengthHinstead of the separation distance
between the monomers 2+ 1
Since the potentials we are considering are Gaussian pra
cesses, following Ric@4] we can write an explicit relation
between statistical features of the potential and dynamica
properties, namely,

NN
(lo(M)[%) [T (al2) 22702

" 112
fo SEESIDEN
—4n| —— . (39)
[ Nl

10 20 30 40

wherel is the mean distance between consecutive minima in 0

the velocity of the particle along the polymer. Combining the 0 o
last two equations we have that the mean distancée- _
tween consecutive minima in the velocity as FIG. 6. Mean distancé , (in o units between consecutive
minima in the velocity as a function af.
| ,=47oh(a), (39
number of relevant minima occurring in each graph of Fig. 8,
where and dividing the corresponding interval on tkeaxis by the
o 1/2 respective number of minima. For example, in Fig0)q «
f [ DK\ 1yA(2)]%d 2 =20) the number of relevant minima k=231, and the in-
h(a)= 0 (40) terval on theX axis isl,=50 (in ¢ units). Consequently, the

observed mean distance in this figure M/I,=50/31

~1.613, in good agreement with tH_QO/0'=1.622 value
predicted by Eq(41).

fo [Z0* 3K (,_1)(2)]%dZ

is a function ofa only. In Fig. 6 we show the graph thfY/a
as a function ofx, obtained by numerically computing «)
from Eq. (40). By performing a least squares fit on this VIl. CONCLUDING REMARKS

graph, the functional relationship betweerandl_a/a turns

Throughout this work we have seen that a random distri-
out to be

bution of charges along a polymer generates a random cor-
-, —12 related potential with a Gaussian distribution, even though
lo/o=5.13x (41) the charges on the polymer are not correlated. This result is
— ) ) ) quite general since, as we have seen, in order to obtain it
Note that Eq(39) states that, is ascale invariant quantity  yery few restrictions on the system were imposed: for the
since for a given type of interactioffixed «), | ,/o is con-  electrostatic potentials most commonly occurring in nature
stant, providedr is large enough for the Gaussian approxi- (which are square integrablet is sufficient for the distribu-
mation to hold. tion P(a) to have a well defined second moment.

The above considerations can be visualized in Fig. 7, In view of the results presented here, a note of caution is
where we show the velocity of the particle along the polymemelevant when assigning correlations in the modeling of dis-
for different values ofc and a=4. As can be seen in the order. We have shown that for randomly charged point par-
figure, if o is large enough, the statistical structure of theticles, the CLT restricts the resulting potentials to be corre-
velocity does not change asincreases, once we have res- lated Gaussian processes; for example, s&orrelated
caled the graphs in units ef. In Fig. 8 the velocity of the potential landscap®(x), i.e., one whose correlation func-
particle along the polymer is depicted again, but now fortion is given by(V(x;)V(X,))= 8(X1—X5) is ruled out.
successively increasing values @fand constan. We can Although the electrostatic potentials most commonly oc-
see that Eq(41) is actually giving the mean distance be- curring between point particles actually satisfy the Lindeberg
tween consecutive minima in the velocity by counting thecondition, and therefore yield Gaussian distributions, there
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FIG. 7. Velocity of the particle along the polymer for different FIG. 8. Velocity of the particle through the polymer for different

values ofo and a=4. (a)_ (’T:O'l' (b) o=1. () 021.0' @ o values ofa and 0=100, plotted as a function of the position
=100. Note that the statistical structure of the velocity no longer . . L T T
measured inor units (x/o). The charge probability distribution is

fﬁ;ggﬁeﬂ;cﬁfgli\tljlclijizfrigfllj tLZeo?rSEQ;gse;i ?:tlz:a;geg by using the same as in Fig. 2Za) In this casew=2. The number of relevant
T minima is N=22 and the interval length i5,.=80. So the mean
) ) ) _ _ distance between minima in the interval shown I_igr— 80/22
are some interaction poten_tlal_s_for which the Lindeberg con=3 363, (b) «=10, N=31, andl,=50; thereforel,o=50/31
dition does not hold. If the individual potentials generated by: 1.6129.(c) a=20 and|,=20/17=1.1764. (d) «=40 andl,
each one of the monomers are of extremely short range, or if. 15/18= 0 8333.
on the contrary, they do not decrease sufficiently rapidly
with distance, then the Lindeberg condition is no longer
valid and consequently the resultant potential will not neces-
sarily be a Gaussian process. In Table | we show parameter
ranges for which the “screened” interaction potential given
by Eq. (11) satisfies or not the Lindeberg condition. We can TABLE I. Parameter ranges for which the “screened” interac-
consider these potentialsr a linear superposition of them tion potential given by Eq(11) satisfies or does not satisfy the
as the most general type of electrostatic potentials occurringindeberg condition.
between point particles.
We should emphasize that, in the rough potential case, the
Gaussian probability distribution corresponds not to the po-
tential itself, but rather to the potential differences or poten-
tial derivatives, which are the physically relevant quantities
We have also been able to establish links between stati®< <1 and anya
tical properties of the potential and dynamical features of thes=0 anda>1
test particle interacting with the polymer. In the Gaussiang=0 and 1/Za<1
approximation, the power spectrum of the particle’s velocityg=0 and - 1/2< a<1/2
is scale invariant and directly related to the long range cor-
relations of the potential; moreover, the mean distahge
between consecutive minima in the velocity of the particle isg>1 and anya
a scale invariant quantity over all length scales for which ag=0 anda<-1/2
collective interaction between the particle and the monomers

1
u(y)= [y2+—02]a,zeXF<— %/(y2+02),3)

Lindeberg condition holds

Bounded potential

Bounded potential

Localized potential
Rough potential

Lindeberg condition does not hold

Very short range potential
Nondifferentiable potential




6146 M. ALDANA, H. LARRALDE, AND G. MARTI NEZ-MEKLER PRE 61

prevails(i.e., for sufficiently large values af). where as beforé\? is the second moment d¢¥(a). There-
Finally, we believe that it is important to determine the fore, thes? variable of Eq.(A1) is

distribution function of the distance between consecutive

minima in the velocity of the particléor in the potential ) N )

landscapg in order to calculate some quantities related to Sm=A kzm (95 k(X¥)]°.

the transport along a random potential, such as relaxation or

passage times. Also, the analysis that we have done should |t is clear that in the limitm—o and for large values of

be extended to more than one dimension, and to potentialg, the sum in the above expression can be approximated by

with correlated charge distributions. The latter may producesn integral, giving

processes beyond the correlated Gaussian ones we have dealt

with here. Work in this direction is in progress. . <.
Prog 3= lim s3,=A f [ge(y)]2dy. (A3)
m-— o -
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where we have also taken the limit—oo attending to the

APPENDIX . . . L
considerations made in Sec. IV. Taking into account (&y.
1. Lindeberg Condition and Eq.(A3), and replacing the sum by an integral, the
The Lindeberg condition can be stated as follg#ls Let ~ @POVe equation is equivalent to
&1,65, ..., be independent random variables whose
probability dlstrlbutlorjs _are_lf,Pz, ...,Pn, respectively. lim _f dy[g” (y)]zf a?P(a)da=0,
Suppose that these distributions are such that the mean value ,_.« Jo la|>tJq /g%(y)

E(£)=0, Var(¢,)=62 and let $, be

which is Eq.(8).
SE=02+ 65+ -+ 82, (A1)

. . 2. Well behaved potentials
If for every t>0 the following equality holds ) )
According to Sec. IV, to prove that some kind of poten-

tials U, (x)=ag,(x) satisfy the Lindeberg condition, we

I|m S 22 ot y?P(y)dy=0, (A2)  must show that
e . liml(o)=0, (A4)
then the probability distribution of the normalized sum oo
Xm=(§1+ &t -+ &)/ wherel (o) is defined as
will tend to a Gaussian distribution with zero mean and uni- L[ ) 5
tary variance as m-. (o) =g f dygs(y)] f a“P(a)da.
In the problem we are considering, the overall potential o [a>t30/95(y) (A5)

V(x) is given by
Suppose thag,(x) is given as in Eq(11):

m

V(X)= Z B extd — (y/2)(x*>+ a?)#]
g(r(x)_a (X2+O_2)a/2

[see Eq.(4)], where eachU( ,(x) is a random variable

whose probability densit,(u) is as in Eq.(6). For a fixed (we have suppressed the superscrigtand 3 in order to
positionx, the variancesz(x) of the individual random po- simplify the notation. ThenJ2=A2%["_[g,(y)]%dy is given

tential Ug (x) is given by by
o o _ 23 2\B
(x)—f [U2 () ]2Pe(UE (x)dUE (x) JS:Azo_l—Zaf exg —yo(1+19) ]dt. (A6)
—a (1+t%H)
f [ag®. k(X)]2 Uz k() dlag? . (X)] _ If o is very large, then the_exponential factqr in the_ab(_)ve
g k( ) 0o k(X) ' integral goes to zero very quickly, and the main contribution

to the integral comes from a very narrow interval around the
A 3 CA2[ g 2 origin. Therefore, for large values of we can approximate
= X a‘P(a)da=A x) 1%,
[954(0)] J (a)da=A%g5 (%)) el
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s exf — yo?P(1+1t%)F] dt
(1+t3)*

’

J(Z)%A20_172aJ'

- &

wheree<1. We can further expand (1t?)# in powers oft,

retaining up to the second order terms, and in view of the

small value ofe we can simply take (+t?)*=1, which
lead us to

_ 26 % 55252
ngAzal 2agye f e 7Pt

—&

%AZ" [la_l—ﬁ—Zae—y(J’zﬁ.
vB

Now, we need to show that,(x)/J;— 0 asc—. To do
this, we note that for very large the square of the function
g,(X) can be written as

(A7)

L X —yo?P(1+ B(XPl0?) + - - )]
1+a(Xa?) +- - '

[9,(x)]*=0

Therefore[g,(x)/Jo)? is

2 [
gO’(X) wi y_ﬁ02a+ﬁ—leyozﬁo.20
Jo Az w

" exd — yo?P(1+ B(x¥ o)+ - - -)]

1+ a(x?lo?)+ - -
1 [yB ,  exd—yo®P(BXCla®)+ )]
~ — —0 s
A2 N T 1+a(x?la?)+---
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parameterse and vy replaced bya’ and y’, respectively.
The value of this integral for very large is given in Eq.
(A7) (with ' and vy’ instead ofa and y). Therefore, the
asymptotic dependence bfo) on o is given by

2t¢ eld
(ﬁ) oB-Dsl2

A2Teg 14g/2\ ™

which evidently vanishes as—c, providedg<1. Thus, if
0=<p<1 the Lindeberg condition is satisfied, as we want to
show.

I(o)~

3. Fourier transforms

In this section we explain how to obtain E§5). We start
by Fourier transforming Eq32), which leads to

m

a(x)=ix§g(>\)k;m ae” M+ ?sin(mx). (A8)

The power spectrum of the velocity is given hAy()\)|2.
So by multiplying Eq.(A8) by its complex conjugate we
obtain

m

E akef”‘k

k=-—m

2 2

" ~ 4F
lo(M)[2=22[g2(\)|? +T£si¥(mx>

+4Fo§g()\)sin(m)\)Re( k; ake‘”‘k) , (A9)

where we have used the fact t@{l,‘t()\) is a real function. By
averaging Eq(A9) in the ensemble of all possible realiza-

and it is easy to see that the above expression vanishes #ans of thea, charges, using the probability density function

o—o, Thus, we can makd,/g,(x) bigger than any real
number just by choosing large enough.

On the other hand, we are assuming tRéa) has a well
defined second moment and therefétéa) must decay to

zero faster than fid|® as|a|—«. Hence, we can suppose,

without loss of generality, thaP(a)~1/a|®**® as|a|—oe,

for somee>0. The above, of course, represents an upper

bound for the asymptotic behavior &f(a).
As we have seen, if is very large, thed,/g,(y) is also

P(a), we obtain

m

2 akefi}\k

k=-—m

~ N2y y 2[5 2 °\ | 4Fg
(M%) =N[g5(N)] +Fsm2(m7\)

+4Foéf;<x>Re<kE_ (ae ™

and remembering thdt,) =0, the last equation transforms

very large and therefore we can use the above asymptotig;

behavior ofP(a) to computel (o), which leads to

@ 1
|(U)%362f7de[gf§(Y)]2j ?——da

a
tlal>tdo/g,(y) |a|

_Zt_sj‘” 9o(y) 2”d
a &€ —o0 JO y

2t7° o
=25, g, 017 7ay

&

_ 2t8J6(2+8)012arf

&

= expl — v 02P(1+y?)F] |
(1+y?)*

l
—o0

wherea’'=a(1+¢/2) andy’=y(1+¢/2). But the last in-
tegral is exactly the same as the one in E&6) with the

)

m
—iNk
E e
k=-m

<|8(x>|2>=x2|é$<x>|2<

4F3
+ —SirP(mA). (A10)
A

The sum appearing in EGA10) can be divided into two
parts:

2|2

=-m

m
2 akeﬂ)\k alel}\l)
k=-—m

m m

> aZ+ > aaeMh,
=

k=-m
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Averaging the last expression with the probability densityablesa, to write (a,a,)=(a,)(a,)=0. Inserting the last re-

function P(a) leads us to the following result:

m
2 ake—l)\k
k=-m

2 m m
)= 2 @3, e
() 3 1+(aa)3 e

=(m+ DA%+ (a)(a) 2, (7Y

=(m+1)A?,

sult into Eq.(A10), we obtain

- R 4F2
(o(M)[2=N2g%(\)|2(m+1)A2+ )\—zosinz(m)\).

(A11)

Note that the second term on the right hand side of Eq.
(A11) is just the power spectrum of the constant fofee
given in Eqg.(30). This term contributes to the overall power
spectrum of the velocity just with a very sharp peakiat
=0 (for m—ce it is a Dirac delta functiopy and does not
carry along any useful information on the potential structure.
For this reason, this term has been omitted from the analysis

where we have used the statistical independence of the vaiin the main body of the work.
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